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Abstract
Introduction: Over the last decades, neurofeedback has been applied in variety of 
research contexts and therapeutic interventions. Despite this extensive use, its neu‐
ral mechanisms are still under debate. Several scientific advances have suggested 
that different networks become jointly active during neurofeedback, including re‐
gions generally involved in self‐regulation, regions related to the specific mental task 
driving the neurofeedback and regions generally involved in feedback learning 
(Sitaram et al., 2017, Nature Reviews Neuroscience, 18, 86).
Methods: To investigate the neural mechanisms specific to neurofeedback but inde‐
pendent from general effects of self‐regulation, we compared brain activation as meas‐
ured with functional magnetic resonance imaging (fMRI) across different mental tasks 
involving gradual self‐regulation with and without providing neurofeedback. Ten par‐
ticipants freely chose one self‐regulation task and underwent two training sessions 
during fMRI scanning, one with and one without receiving neurofeedback. During neu‐
rofeedback sessions, feedback signals were provided in real‐time based on activity in 
task‐related, individually defined target regions. In both sessions, participants aimed at 
reaching and holding low, medium, or high brain‐activation levels in the target region.
Results: During gradual self‐regulation with neurofeedback, a network of cortical 
control regions as well as regions implicated in reward and feedback processing were 
activated. Self‐regulation with feedback was accompanied by stronger activation 
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1  | INTRODUC TION

Despite its extensive use over several decades and broad evidence 
for neurofeedback induced changes that extend beyond the neuro‐
feedback training environment (including on memory Young et al., 
2017, affect Scheinost et al., 2013; Zilverstand, Sorger, Sarkheil, & 
Goebel, 2015, attention Zilverstand et al., 2017, perception Amano, 
Shibata, Kawato, Sasaki, & Watanabe, 2016 and motor performance 
Subramanian et al., 2011) the neural mechanisms underlying neu‐
rofeedback are subject of an ongoing debate (for an overview see 
Sitaram et al., 2017). In a recent meta‐analysis, whole‐brain acti‐
vation during real‐time functional magnetic resonance imaging (rt‐
fMRI) neurofeedback was compared across different neurofeedback 
studies (Emmert et al., 2016). Activation during neurofeedback train‐
ing was observed in areas implicated in self‐regulation and cognitive 
control, as well as in areas recruited during visual feedback learning, 
even if these areas were not actually the target of the self‐regula‐
tion training. The activated network encompassed the dorsolateral 
(DLPFC) and ventrolateral prefrontal cortex (VLPFC), the temporo‐
parietal cortex and the thalamus, anterior insula (aINS), the posterior 
section of the anterior cingulate cortex (pACC), visual areas and the 
basal ganglia, with several local maxima distributed over the stria‐
tum. Activity in these regions most likely reflects several different 
processes, including the preparation and execution of mental strat‐
egies supporting self‐regulation of brain activity, reward processing, 
self‐evaluation of performance based on feedback information and 
the updating of strategies, but an extensive body of research is still 
needed to disentangle these processes. To discriminate the neural 
basis of neurofeedback from networks also recruited during other 
forms of self‐regulation training, it remains to be understood which 
regions shared between different neurofeedback tasks are specific 
to neurofeedback and which are reflective of self‐regulation per se.

Marchesotti et al. (2017) detected a selective activation increase 
in the striatum during motor imagery with neurofeedback when 
comparing meta‐analytic activation maps of motor imagery with 
and without providing neurofeedback and Johnston, Boehm, Healy, 
Goebel, and Linden (2010) had reported increased activation in the 
ventral striatum with progression in neurofeedback training for up‐
regulating negative affect by providing neurofeedback from individ‐
ual areas that showed increased activation in response to negative 

affective image. In congruence with these reported activation in‐
creases in the striatum during neurofeedback, several theoretical 
frameworks note that BCI control/neurofeedback rewards subjects 
for a certain mental operation or neural state, notably by underling 
the crucial involvement of operant/instrumental conditioning in 
neurofeedback (Fetz, 2007), by interpreting BCI control training as 
skill learning that is heavily dependent on plasticity in the basal gan‐
glia (Birbaumer, Ruiz, & Sitaram, 2013) or by underlining the impor‐
tance of feedback loops for biofeedback learning in general (Lacroix 
& Gowen, 1981). While early EEG‐neurofeedback studies lacked di‐
rect evidence for involvement of the striatum in neurofeedback due 
to the limitations of EEG in coverage of subcortical areas (Grech et 
al., 2008), contemporary approaches on EEG and fMRI neurofeed‐
back agree with regard to the central role of striatal reward learning 
(Birbaumer et al., 2013; Davelaar, 2018).

In the present study, we extended the aforementioned line of 
research by comparing self‐regulation with and without neurofeed‐
back with a special focus on the striatum, a key region involved in 
feedback and reward processing (Balleine, Delgado, & Hikosaka, 
2007; Bartra, McGuire, & Kable, 2013; Kohrs, Angenstein, Scheich, 
& Brechmann, 2012), the central hub of dopamine based reinforce‐
ment learning (Robbins & Everitt, 1996) where feedback information 
is processed and further utilized to guide actions (O'Doherty et al., 
2004; Samejima, Ueda, Doya, & Kimura, 2005) and constituting the 
main hub for long‐term motivation of behaviour based on reward 
learning (Tricomi, Balleine, & O'Doherty, 2009), making the under‐
standing of how neurofeedback affects the striatum a crucial ele‐
ment of understanding the facilitating effects of neurofeedback in 
general.

As neurofeedback is most commonly used to guide a partici‐
pant's self‐regulation by reinforcing activation states via operant 
conditioning with positive feedback (Birbaumer et al., 2013; Fetz, 
2007), we therefore predicted that striatum activation would con‐
stitute a crucial marker for differentiating between self‐regulation 
with neurofeedback and self‐regulation without neurofeedback, as it 
reflects external reward information that is utilized to guide ongoing 
behaviour (Balleine et al., 2007), which is lacking in self‐regulation 
without neurofeedback.

While the striatum is a functionally heterogeneous structure 
(parcellation studies suggest that ventral/anterior portions are more 

within the striatum across different mental tasks. Additional time‐resolved single‐trial 
analysis revealed that neurofeedback performance was positively correlated with a 
delayed brain response in the striatum that reflected the accuracy of self‐regulation.
Conclusion: Overall, these findings support that neurofeedback contributes to self‐
regulation through task‐general regions involved in feedback and reward 
processing.

K E Y W O R D S
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strongly involved in evaluating incoming reward, whereas medial to 
dorsal sections rather bias actions based on previously processed 
rewards (Balleine et al., 2007; Jung et al., 2014; O'Doherty et al., 
2004)), different functional processes in the striatum transition 
smoothly into each other (Haber, Fudge, & McFarland, 2000) and 
timing of incoming rewards constitutes a crucial influence across dif‐
ferent processing stages in the striatum (Cardinal, 2006; Gustavo, 
Soares, & Paton, 2015; McClure, Berns, & Montague, 2003; Pagnoni, 
Zink, Montague, & Berns, 2002). So while previous studies have 
mainly concentrated on localizing the regions involved in neurofeed‐
back, we additionally applied a time‐resolved analysis on the blood 
oxygen level dependent (BOLD) signal of the striatum, to determine 
the temporal properties of feedback processing.

Up to this date, most neurofeedback paradigms focused on de‐
creasing or increasing activation within a certain brain region (Caria 
et al., 2007; Hamilton, Glover, Hsu, Johnson, & Gotlib, 2011), func‐
tional connectivity between brain regions (Megumi, Yamashita, 
Kawato, & Imamizu, 2015), directional connectivity between brain 
regions (Haller et al., 2013), or frequency‐bands (Gevensleben et 
al., 2009; Mottaz et al., 2015). These paradigms reinforced sub‐
jects to modulate the neurofeedback signal into one direction, that 
is, to either up‐ or down‐regulate the neurofeedback signal maxi‐
mally. We recently demonstrated feasibility of a novel type of neu‐
rofeedback paradigm in which participants focused on achieving 
and maintaining a specific target level of activation (Sorger, Kamp, 
Weiskopf, Peters, & Goebel, 2018). Participants aimed at reaching/
maintaining a rtfMRI‐neurofeedback signal (visualized by means of 
a thermometer display) corresponding to the brain‐activation level 
within individually defined brain regions at either 30%, 60% or 
90% of their individual maximal activation capacity. We found that 
participants showed a significantly increased ability to gradually 
self‐regulate activation in the neurofeedback target regions, when 
receiving visually presented neurofeedback information compared 
to gradual self‐regulation without providing neurofeedback. In 
contrast to classical paradigms that train to maximize (de)activa‐
tion or connectivity, participants trained according to the novel 
parametric activation paradigm received detailed neurofeedback 
information on the current brain‐activation level with every data 
point (here every 2 s) visualized as deviation of the actual condition 
(actually achieved brain‐activation level) from the different nomi‐
nal conditions (instructed target brain‐activation levels). Moreover, 
they could deviate from the task goal by both reaching too high or 
too low activation levels (not given in the conventional, maximiza‐
tion paradigms).These features considerably increase the general 
task difficulty, and we would expect that successful task perfor‐
mance is being experienced as strongly rewarding (see DePasque 
Swanson & Tricomi, 2014). Another advantage of gradual feedback 
for studies into the mechanisms of self‐regulation is that the vi‐
sual information provided during neurofeedback is more important 
for successful task performance than in maximization paradigms, 
as participants not only need to learn how activation could be in‐
creased or decreased best, but also how the actual magnitude of 
activation can be held at a particular target level. Gradual feedback 

protocols are thus particularly suited for studies that look into 
the learning mechanisms underlying successful neurofeedback 
training.

In the present study, we defined and applied a novel marker of 
self‐regulation success to a dataset from the aforementioned self‐
regulation study by Sorger et al. (2018). This marker of self‐regulation 
success represents the neurofeedback reward value as indicated by 
the visual information on the feedback display. In the study of Sorger 
et al. (2018), each participant chose one individual mental task for 
self‐regulation and all participants trained to self‐regulate their en‐
gagement with the chosen mental content gradually (chosen mental 
tasks included inner speech, motor imagery, mental calculation, vi‐
sual imagery and auditory imagery). The inter‐individual heterogene‐
ity of self‐regulation strategies allows investigating the shared neural 
basis of neurofeedback. Participants underwent two self‐regulation 
sessions during fMRI, one with and one without receiving feedback 
information from individually defined neurofeedback target regions. 
This allows us to control for effects of self‐regulation that are unre‐
lated to neurofeedback as for example observed during meditation 
(Kjaer et al., 2002; Tang, Hölzel, & Posner, 2015), and reveal regions 
more related to the actual processing of neurofeedback and the 
implicated reward information. As the neurofeedback signal was 
provided continuously, the constant influx of feedback information 
created a demanding situation for the processing of reward informa‐
tion. Neurofeedback was constantly updated, while being delayed 
over several seconds in relation to the mental action actually causing 
a change in the neurofeedback signal. As activation in the striatum 
is known to be strongly influenced by the temporal properties of 
reward information (Cardinal, 2006; Gustavo et al., 2015; McClure 
et al., 2003; Pagnoni et al., 2002), analysis has to take the temporal 
sensitivity of reward processing into account. Analysis of the avail‐
able data therefore focused on the dynamic and delayed nature of 
the reward information provided by rtfMRI neurofeedback. This was 
achieved by extracting one value of neurofeedback performance 
for every data point acquired during gradual self‐regulation periods 
(every 2 s) and by relating this information to striatum activation in 
different time windows.

Taking into consideration these ideas and in order to further 
study the neuronal mechanisms of rtfMRI neurofeedback, more par‐
ticularly the role of the striatum, the present study focused on the 
following research objectives:

(i)	 �Demonstrate joint activation of cortical control areas and areas 
related to feedback learning within a single sample during neu‐
rofeedback‐guided self‐regulation compared to rest, thereby 
investigating the replicability of recent meta‐analytical findings 
(combining data of several neurofeedback studies Emmert et al., 
2016) and their reliability in smaller samples.

(ii)	 �Separate activation related to feedback processing from activa‐
tion related to self‐regulation during neurofeedback in the stria‐
tum and determine whether increased striatum activation during 
neurofeedback reflects a specific response to the information 
contained in the provided neurofeedback information.
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(iii) 	 �Disentangle which activation increases during neurofeedback 
indicate feedback processing and which are reflective of higher‐
order cognitive control processes involved in self‐regulation.

2  | METHODS AND DESIGN

2.1 | Participants

All analyses were performed on the dataset acquired by Sorger et al. 
(2018): 10 healthy participants (mean age: 27.0 years, SD: 3.8 years, 
five female, one left‐handed), all students or staff members of the 
Faculty of Psychology and Neuroscience at Maastricht University 
with normal or corrected‐to‐normal vision participated in the study 
(see Sorger et al., 2018 for more detailed participant characteris‐
tics). None of the participants had participated in a neurofeedback 
experiment before. Before each MRI scanning session, participants 
gave written informed consent. The experimental procedure was ap‐
proved by the local Ethics Committee of the Faculty of Psychology 
and Neuroscience at Maastricht University.

2.2 | Experimental design

Preceding the first MRI measurement, each participant freely chose 
one individual mental task for self‐regulation: Experimenters sug‐
gested various mental tasks (inner speech, motor imagery, mental 
calculation, visual imagery and auditory imagery) that had been 
proven to evoke robust brain activation in circumscribed brain re‐
gions in previous fMRI studies as possible activation strategies. 
Additionally, the experimenters recommended several modulation 
strategies that could be applied by participants to alter the brain‐
activation level. Basically, these strategies allowed for changing 
certain aspects of mental‐task performance parametrically (e.g., the 
speed, intensity or complexity). Participants selected their activa‐
tion strategies and initial modulation strategies based on personal 
preference or feeling of best mastery. Chosen self‐regulation tasks 
included inner speech, motor imagery, auditory imagery, and visual 
imagery. Importantly, no participant used voluntary emotion regula‐
tion as mental strategy, thereby forecoming that alterations in stria‐
tum activation were dominated by voluntarily generated affective 
states.

Participants received no feedback in one fMRI session, 
whereas in the other session they were provided with real‐time 
information on the current BOLD‐signal level in a predefined 
mental task‐related brain region. During neurofeedback sessions, 
participants were asked to modulate their BOLD signal to three 
different target levels using the chosen mental task. The no‐feed‐
back and feedback fMRI sessions took place on separate days for 
all participants. The order of the type‐of‐training conditions (no 
feedback‐feedback or feedback‐no feedback) was balanced across 
participants. Both scanning sessions consisted of four training 
(modulation) runs in which participants were visually instructed 
to modulate their BOLD‐signal magnitude to the three different 
target levels. Each target‐level condition appeared three times per 

run in randomized order resulting in a total of twelve trials per 
target‐level and type‐of‐training condition. Each of the nine mod‐
ulation blocks and each of the ten resting blocks that alternated 
with the modulation blocks lasted 26 s resulting in a run length 
of 8 min and 14 s. A feedback scanning session started with a 
functional‐localizer run in order to select a mental task‐specific 
neurofeedback target region and to determine the individual max‐
imum percent signal change (maxPSC). In the functional‐localizer 
run, two target‐levels (50% and 100%) were implemented (five 
trials per target‐level condition). The two target‐level conditions 
appeared in alternating order. Again, the duration of the 10 modu‐
lation trials and the eleven resting periods were 26 s adding up to 
a total run duration of 9 min and 6 s.

2.3 | Task instructions

Participants were instructed to keep their selected activation strat‐
egy constant across all functional runs (functional‐localizer, no‐feed‐
back and feedback runs). Thus, they should not change their general 
activation strategy across time (and sessions). In order to modulate 
their BOLD signal to the different target levels, participants were 
asked to apply the modulation strategies. Importantly, in the feed‐
back condition participants were instructed to consider the provided 
neurofeedback information and to explore which of the modula‐
tion strategies were most effective. Moreover, participants were 
explicitly allowed to adapt the suggested modulation strategies or 
even generate and test novel (“own”) modulation strategies. During 
functional‐localizer and no‐feedback runs, participants were asked 
to try to evoke different brain‐activation levels based on their cur‐
rent hypothesis on how the BOLD‐signal magnitude can be altered 
systematically.

During self‐regulation (with and without feedback), a ther‐
mometer‐like display on black background was used consisting of 
10 white rectangles stacked on top of each other (see Figure 1). 
Participants were instructed to adjust their BOLD‐signal mag‐
nitude to a particular target level by displaying the outline of a 
certain rectangle in red for the duration of the modulation trial. 
Thus, the vertical position of the colored rectangle represented 
the desired brain‐activation target level. In the functional‐localizer 
run, rectangle 5 (counted from bottom) corresponded to the 50% 
condition and rectangle 10 represented the 100% condition of the 
individual maxPSC. In the modulation runs, rectangles 3, 6, and 9, 
corresponded to the low, medium, and high target‐level conditions, 
respectively. During resting periods, no rectangle was colored 
red. In the modulation runs of the feedback session, participants 
were additionally provided with continuously updated information 
about their current BOLD‐signal level within the neurofeedback 
target region. This was realized by filling in (with gray color) the 
thermometer's rectangles according to the actual current BOLD‐
signal level within the neurofeedback target region. Participants 
were instructed to reach and hold the desired brain‐activation 
target level, thereby reducing the absolute distance between the 
BOLD‐signal level and the target rectangle (see Figure 1).
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2.4 | Data acquisition

(f)MRI data were acquired using a 1.5‐T whole‐body (Magnetom 
Sonata; Siemens AG, Erlangen, Germany) or a 3‐T head scanner 
(Siemens Allegra, Siemens AG). Participants’ heads were fixated with 
foam padding to minimize spontaneous or task‐related motion. The 
proportion of participants undergoing 1.5 and 3T scanning was bal‐
anced (5/5) and each participant underwent the same field strength 
for both training sessions.

2.4.1 | Structural data acquisition

All participants received a high‐resolution T1‐weighted anatomi‐
cal scan using a three‐dimensional (3D) magnetization prepared  
rapid‐acquisition gradient‐echo sequence (1.5‐T scanning: 192 slices,  
slice thickness = 1 mm, no gap, repetition time [TR] = 2000 ms, echo  
time [TE] = 3.93 ms, flip angle [FA] = 15, field of view [FOV] = 250 ×  
250 mm2, matrix size = 256 × 256, total scan time = 8 min and 34 s;  
3‐T scanning: 192 slices, slice thickness = 1 mm, no gap, TR = 2,250 ms, 
TE = 2.6 ms, FA = 9, FOV =256 × 256 mm2, matrix size = 256 × 256, 
total scan time = 8 min and 26 s).

2.4.2 | Functional data acquisition

Repeated single‐shot echo‐planar imaging was performed. Except 
for the number of acquisitions (functional‐localizer run: 273 volumes; 
modulation runs: 247 volumes), identical scanning parameters were 
used for all functional measurements (TR = 2000 ms, TE = 40 ms, 
FA = 90, FOV = 224 × 224 mm2, matrix size = 64 × 64, number of 

slices = 25, slice thickness = 3 mm, 1 mm gap, slice order = ascending/
interleaved).

3  | DATA ANALYSIS

3.1 | Selection and definition of neurofeedback 
target regions

After completion of the functional‐localizer run, the first two vol‐
umes were discarded from further analysis to account for T1‐satu‐
ration effects. Functional data were then preprocessed (motion 
correction, linear‐trend removal, temporal high‐pass filtering [three 
cycles/time course]). Eventually, a multiple‐regression general linear 
model (GLM) was calculated voxel‐wise applying predictors corre‐
sponding to the two target‐level conditions (predictor time courses 
being derived from a boxcar function convolved with a standard 
hemodynamic response function (single‐gamma function Boynton, 
Engel, Glover, & Heeger, 1996). Candidate neurofeedback target re‐
gions were identified by contrasting the mean brain activation dur‐
ing both target‐level conditions to the mean activation during the 
interleaved resting periods. From the obtained F‐maps (p < 0.05, 
Bonferroni‐corrected), a region of interest (ROI) was defined for 
each participant (for details of neurofeedback target regions see 
Sorger et al., 2018).

3.2 | Calculation of the feedback signal

For an extensive description of how the neurofeedback signal 
was created the reader is referred to Sorger et al. (2018). In short, 

F I G U R E  1  Absolute distance of achieved activation level to instructed target activation level. Participants evaluated the appropriateness 
of their mental operation (and therewith their self‐regulation success) based on the visually provided neurofeedback information. They 
could assess their self‐regulation success by obtaining the absolute distance between the magnitude of the actually achieved activation 
level (provided neurofeedback information) and the instructed target activation level (indicated by the red rectangular). A smaller and larger 
distance to the target activation level represented a superior and inferior self‐regulation performance, respectively



6 of 15  |     SKOTTNIK et al.

functional images were reconstructed and written to the scanner 
console's hard disk in real‐time during neurofeedback sessions. 
The real‐time data analysis software (Turbo‐BrainVoyager, Brain 
Innovation B.V., Maastricht, the Netherlands) was used to extract 
and average the BOLD‐signal values of all voxels in the individual 
neurofeedback target region at each TR. The resulting means were 
normalized to the range [0–10], in relation to the preceding base‐
line period (constituting a value of 0) and an individual maximum 
percent‐signal change value, derived from the localizer run (consti‐
tuting a value of 10). The resulting value range was binned into 10 
segments and all segments of the thermometer display up to the 
given feedback value were greyed. Feedback was updated every 
2 s.

3.3 | (f)MRI data preprocessing

To answer the specific research questions of the current paper, of‐
fline analysis of the (f)MRI data was performed using BrainVoyager 
QX (v2.8, Brain Innovation, Maastricht, the Netherlands). 
Anatomical data sets were corrected for spatial intensity inho‐
mogeneity. For all participants, the anatomical data set from the 
first session was transferred into ACPC space and the anatomi‐
cal data set from the second session was automatically aligned to 
the ACPC version of the first data set. Both data sets were spa‐
tially normalized by Talairach transformation. All functional data 
sets underwent slice scan‐time correction and temporal high‐pass 
filtering (three cycles per time course). Three‐dimensional (3D) 
head‐motion detection and correction was applied by spatially 
aligning all functional volumes of a session to the first functional 
volume of the first run within that session. Finally, all functional 
runs were spatially normalized to Talairach space and interpolated 
to a 3‐mm3 voxel resolution. For whole‐brain and masked analy‐
sis, functional data were smoothed in 3D with a 4‐mm FWHM 
Gaussian kernel.

3.4 | Extraction of striatum time‐series

One ROIs for the striatum was defined for each hemisphere 
based on peak coordinates from a recent meta‐analysis on re‐
ward processing in fMRI (see Figure 2). For both hemispheres, 
selected coordinates marked the maximal spatial overlap of ac‐
tivation increases in response to reward of 126 fMRI studies 
(Bartra et al., 2013). The MNI coordinates reported in the meta‐
analysis were converted into Talairach coordinates (Talairach & 
Tournoux, 1988) using the Yale BioImage Suite Package tal2mni 
tool (Lacadie, Fulbright, Rajeevan, Constable, & Papademetris, 
2008). Spherical volumes of interest (one left‐ and one right‐hem‐
ispheric) with a 3‐mm radius were created around the particular 
coordinates. Both ROIs were located in the anterior section of 
the corpus striatum, centered between caudate head and an‐
terior putamen (left striatum: 123 voxels, x = −14, y = 7, z = −2, 
right striatum: 123 voxels, x = −11, y = 3, z = −3; see Figure 2). 
The described approach increased the probability of detecting 
reward‐related activation in the brain while not making a priori 
assumptions regarding anatomical sub‐regions of the striatum 
contributing to the processing. For further analysis, the resulting 
striatum ROI in the hemisphere of the individual neurofeedback 
target region was chosen for each participant. As cortico‐stri‐
atal structural connectivity is known to be dominantly ipsilateral 
(see for example Innocenti, Dyrby, Andersen, Rouiller, & Caminiti, 
2016, Jarbo & Verstynen, 2015) this approach increased the 
probability of detecting striatal activation specifically related 
to the cortical processes involved in the individual self‐regula‐
tion task. For each ROI, eight time courses (from each of the four 
self‐regulation runs per training condition) were extracted per 
participant.

Moment‐to‐moment neurofeedback stimulation images (as 
presented to the participant during the neurofeedback experi‐
ment) were re‐created applying the same procedure as described 

F I G U R E  2   Definition of striatum regions of interest. The figure shows the right‐ and left‐hemispheric striatum regions of interest 
(R = right, L = left) overlaid on the mean of all individual anatomical data sets and slice positions of displayed coronal (orange) and axial 
(purple) slices. Regions of interests included all voxels in a 3‐mm sphere centered around peak coordinates from a recent meta‐analysis 
on reward processing representing maximal overlap of BOLD‐signal increase in response to positive reward (Bartra et al., 2013). Provided 
coordinates are in Talairach space
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in Sorger et al. (2018) for the feedback sessions and the same pro‐
cedure was applied post hoc for no‐feedback sessions, resulting 
in one picture per TR/scanned volume during modulation periods 
for both types of training. Using in‐house software written in 
MATLAB (v8.1 R13; The MathWorks, Natick), values of feedback 
magnitude were extracted from picture files. For each TR, one 
index of self‐regulation accuracy was created by calculating the 
absolute difference between the target level and the feedback 
magnitude actually achieved by the participant. Subsequently, 
the time series of accuracy indices were convolved with a he‐
modynamic response function to create a self‐regulation perfor‐
mance‐predictor time course (representing the neurofeedback 
task accuracy at each TR across time) for subsequent correlation 
analysis with ROI time‐courses.

3.5 | Statistical analysis

3.5.1 | Whole‐brain analysis

To determine whether our sample showed activation dur‐
ing neurofeedback in coherence with recent meta‐analytical 
evidence on neurofeedback, we analyzed whole‐brain data in 
BrainVoyager QX by computing a group random‐effects GLM, 
including the types of training (feedback, no feedback), target 
levels (low: 30%, medium: 60%, high: 90% of the individual 
maxPSC), as well as six motion parameters as confounding pre‐
dictors to estimate beta values. We employed a two‐way within‐
subject design with target‐level (low, medium and high) and type 
of training (no feedback and feedback) as factors. Subsequently, 
we compared activity increases during self‐regulation with neu‐
rofeedback to passive viewing of neurofeedback (i.e. the resting 
condition) by contrasting activation across all target‐level condi‐
tions during modulation periods with neurofeedback to baseline, 
during which participants passively observed fluctuations in the 
neurofeedback signal.

3.5.2 | Striatum ROI analysis

To determine whether striatum activation increases during rtfMRI 
neurofeedback‐based self‐regulation compared to self‐regulation 
without neurofeedback and whether this effect is influenced by the 
height of the desired target level, we performed a standard volume 
of interest analysis in BrainVoyager QX: Time‐courses of all voxels 
within the meta‐analytically defined striatum ROIs were averaged to 
create one time‐course of each functional run. By computing a group 
random‐effects GLM on the striatum ROI time‐courses, including 
the HRF‐convoluted predictors for types of training (feedback, no 
feedback), target levels (low: 30%, medium: 60%, high: 90% of the 
individual maxPSC), as well as six motion parameters as confounding 
predictors to estimate beta values. We employed a two‐way within‐
subject design with target‐level (low, medium, and high) and type of 
training (no feedback and feedback) as factors. A two‐way repeated 
measures analysis of variance (ANOVA, F‐test) with factors for target 

level and type of training was performed on the resulting striatum 
beta estimates.

3.5.3 | Time‐resolved analysis of neurofeedback 
performance and striatal activation

To investigate whether striatum activation during neurofeedback 
is modulated by the displayed information on self‐regulation ac‐
curacy, performance‐predictor time courses were correlated 
to striatum time courses. In order to also detect temporally de‐
layed activation changes, the predictor time courses were shifted 
in time (see Figure 3). For all time points during the modulation 
periods, predictor time courses were correlated to the striatum‐
ROI time courses within runs. One correlation coefficient was 
acquired separately for each temporal shift, with the maximum 
shift being seven TRs, resulting in eight correlation coefficients 
per run (including the correlation coefficient for the nonshifted 
time course).

Correlation coefficients were subsequently Fisher z‐trans‐
formed and first averaged within subjects and conditions. To cre‐
ate stable estimates of the correlation between the two variables 
with expected high variability, resulting correlation means were 
temporally smoothed by averaging the z‐transformed correlation 
means within two time‐windows that were sufficiently distant in 
time to capture different BOLD response peaks: The early time 
window (0–3 TR shifts) included immediate BOLD changes with a 
margin for variability in BOLD timing and shape and delay in neu‐
ral reactions. The late time window (4–7 TR shifts) included BOLD 
changes delayed for at least 8 s after an immediate BOLD response 
would be expected, so that BOLD changes in the late time window 
rather reflect a secondary stage of processing, as for example re‐
sponse preparation, not an immediate reaction to the rewarding 
feedback.

This procedure resulted in one correlation coefficient per sub‐
ject, time window and type of training (four correlation coefficients 
per participant). Z‐transformed correlation coefficients were com‐
pared between types of training separately within the two time win‐
dows using student's paired‐sample t tests and applying Bonferroni 
correction for multiple comparison correction. Effect sizes were cal‐
culated based on Cohens D (Cohen, 1988) adapted for paired mea‐
sures (Morris & DeShon, 2002).

3.5.4 | Masked voxel‐wise analysis of the 
neurofeedback network

To identify activation increases during neurofeedback independ‐
ent of self‐regulation across the whole neurofeedback network, the 
voxel‐wise group random‐effects GLM was restricted to a mask con‐
stituting of voxels within 15‐mm radii around cortical and 20‐mm radii 
around the two subcortical meta‐analytic peak voxels, that marked 
activation increases across several neurofeedback studies compared 
to rest, using the peak voxels described by Emmert et al. (2016) in 
the pACC, aINS, vlPFC, dlPFC, temporo‐parietal and occipital cortex, 
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and two subcortical peak coordinates that constituted local maxima 
of several subcortical substructures (putamen, caudate, nucleus ac‐
cumbens, globus pallidus, thalamus). The coordinates were trans‐
ferred into Talairach space using the Yale BioImage Suite Package 
tal2mni tool (Lacadie et al., 2008). Differences between the two 
training conditions were compared by contrasting activation during 
modulation periods with neurofeedback to modulation periods with‐
out neurofeedback across the three target levels. Results were clus‐
ter corrected using Monte‐Carlo simulations with 1,000 iterations, a 
FWHM of 1,608 with an initial threshold of p < 0.01. Additionally, a 
liberal correction threshold was applied deliberately for decreasing 
the likelihood of missing potentially lower/more scattered activation 
in prefrontal control areas.

4  | RESULTS

4.1 | Effect of self‐regulation

The contrast for self‐regulation with neurofeedback compared to 
passive viewing of neurofeedback (i.e. rest) revealed an extensive 
network of regional increases (FDR corrected, q < 0.05), encompass‐
ing the bilateral precentral gyrus, the bilateral aINS, bilateral visual 
cortices, bilateral dorsolateral prefrontal cortex (dlPFC), left VLPFC, 
bilateral supplementary motor area, bilateral posterior pACC, left 
frontopolar cortex and an extensive subcortical cluster encompass‐
ing the striatum, thalamus and claustrum and deactivation (Figure 4) 
across the bilateral default mode network (transverse temporal gyrus, 

F I G U R E  3   Time‐resolved analysis of 
striatum activation in response to self‐
regulation success. The figure displays 
the logic of the performed correlation 
analysis. Simulated data during gradual 
self‐regulation is shown: (a) An HRF‐
convolved time series of performance 
indices is created from the absolute 
distance to the target activation level. 
Successful self‐regulation (i.e., accurate 
regulation of the feedback signal to the 
target activation level) is represented by 
a low value. (b) When a corresponding 
activation increase in the striatum ROI 
is delayed (in this example 6 TR), the 
activation peak is not paired to the 
improvement in performance during 
correlation analysis. (c) Only, when the 
striatum time‐course is shifted 6 TRs 
backwards, the increase in striatum 
activation is aligned to the decrease in 
absolute distance during correlation 
analysis
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angular gyrus, precuneus, medial prefrontal cortex [mPFC]) and the 
posterior insula (pINS) bilaterally (Table 1). No significant differences 
between target levels or interactions were observed.

4.2 | Effect of neurofeedback information on 
striatum activation

The main effect for type of training was significant (p = 0.036, 
one‐sided, Figure 5a) but there was no main effect of target level 
(p = 0.14, one‐sided) and no significant interaction (p = 0.08, one‐
sided). Correspondingly, eight out of ten participants showed in‐
creased mean beta values during self‐regulation with neurofeedback 
compared to self‐regulation without neurofeedback but striatum ac‐
tivation did not differ in a consistent fashion between target levels 
across participants (see Figure 5b).

4.3 | Modulation of striatum activation by self‐
regulation success

An extensive analysis of task performance in the given sample can be 
found in Sorger et al. (2018). In short, participants were able to increase 
the BOLD signal magnitude to target levels in a gradual fashion across 
both training conditions (no‐feedback and feedback), but most partici‐
pants demonstrated slightly increased ability to differentiate between 
target levels when provided with neurofeedback information. Both 
training conditions were matched closely with regard to the absolute 
distance to the desired target level (absolute distance mean (feed‐
back) = 3.866, SEM = 0.19; mean (no feedback) = 3.858, SEM = 0.22; 
p = 0.96).

Correlation analysis between performance‐predictor time 
courses and the striatum time courses resulted in one mean z‐
transformed correlation coefficients per type‐of‐training con‐
dition (feedback, no feedback) and the two predefined time 
windows (early, late): Early time window: Neurofeedback‐rz = 0.047, 

SEM = 0.01; No‐feedback‐rz = −0.018, SEM = 0.02; Late time win‐
dow: Neurofeedback‐rz = −0.065, SEM = 0.03; No‐feedback mean 
rz = 0.017, SEM = 0.02 (Figure 6a). Subsequent paired t tests between 
training types indicated a significant difference between correlation 
coefficients only for the late time window (p = 0.044 (Bonferroni 
corrected), Cohens d = 0.912) but not for the early time window 
(p = 0.13 (Bonferroni corrected), Cohens d = −0.677). The effect 
was consistent across participants (see Figure 6b): 8 out of 10 par‐
ticipants showed a more negative mean correlation during gradual 
self‐regulation with feedback compared to gradual self‐regulation 
without feedback in this time window.

4.4 | Sub‐components of the neurofeedback 
network involved in feedback processing

Voxel‐wise analysis restricted to regions showing increased 
activation during neurofeedback (as defined based on meta analytic 
coordinates from Emmert et al., 2016) revealed no significant dif‐
ferences between self‐regulation with neurofeedback compared to 
self‐regulation without neurofeedback (FDR corrected, q < 0.05). 
Deliberately applying a liberal correction threshold for decreasing 
the likelihood of false negatives in the our small sample revealed ac‐
tivation differences in the left anterior striatum, right aINS and left 
visual cortices and lower activation in the bilateral posterior stria‐
tum/thalamus remained, cluster corrected using Monte‐Carlo simu‐
lations with an initial threshold of p < 0.01.

5  | DISCUSSION

5.1 | Brain activation in response to neurofeedback 
during gradual self‐regulation

The main aim of this study was to identify activation related to neu‐
rofeedback processing during neurofeedback‐guided self‐regulation. 

F I G U R E  4  Self‐regulation with neurofeedback compared to passive viewing of neurofeedback. (a) In comparison to the rest condition, 
self‐regulation with neurofeedback was accompanied by increased activation in prefrontal control regions and regions involved in feedback 
processing (visual cortices, anterior insula) as well as decreased activation in the default mode network and the posterior insula. (b) An 
extended increase in subcortical activation was present during self‐regulation with neurofeedback, encompassing the striatum, thalamus, 
claustrum and the brainstem. The figure shows the whole‐brain RFX contrast map thresholded at FDR corrected q < 0.05 on a sample 
participant's inflated cortex segmentation (a) and on the average of the individual anatomical data sets (b)
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We investigated this research question through analysis at whole‐
brain level, in the striatum, a key region implicated in feedback and 
reward processing, and within a whole network of regions that reli‐
ably shows increased activation during neurofeedback as identified 
by a recent meta‐analysis.

We could replicate recent meta‐analytical findings (Emmert 
et al., 2016) within a single sample with regard to joint activation 
of cognitive control areas and areas involved in feedback learning 
by observing extended activation increases in prefrontal control 
hubs (pACC, lateral and posterior PFC) as well as regions involved 
in feedback and reward processing (aINS, striatum, visual cortices), 
the thalamus and deactivation in the default network across differ‐
ent mental tasks during neurofeedback. ROI analysis focussed on 
the striatum revealed significantly higher activation during grad‐
ual self‐regulation with rather than without feedback, suggesting 
that during neurofeedback, the observed striatum modulations 
reflect feedback learning and not self‐regulation per se, as partic‐
ipants achieved successful self‐regulation already without receiv‐
ing feedback (for an extensive discussion of self‐regulation in the 
sample see Sorger et al., 2018) and both self‐regulation conditions 
did not differ with regard to the provided visual markers of task 
performance, that is absolute distance to target level. As partici‐
pants were engaged in different self‐regulation task domains, the 
observed increase in activation was not related to a specific task 
domain, but specifically driven by neurofeedback. Subsequent 
analysis on the relationship between visual information pro‐
vided during neurofeedback and striatum activation showed that 
more accurate neurofeedback performance was accompanied by 
an increased BOLD‐signal level in the anterior striatum in a late 
time window (8–14 s after a particular neurofeedback value was 
visually displayed), suggesting that the observed striatal activa‐
tion increases during neurofeedback are indeed reflecting the 
processing of feedback information. While ROI analysis revealed 
increased activation during neurofeedback compared to self‐regu‐
lation without neurofeedback in the anterior striatum, we failed to 
detect activation differences during voxel‐wise analysis within the 
network of regions commonly involved in neurofeedback (Emmert 
et al., 2016). As we cannot exclude the absence of activation dif‐
ferences within other regions of the network (especially in feed‐
back processing regions and visual areas as suggested by liberal 
cluster corrected analysis), further research with higher statistical 
power is needed to describe the distribution of activation within 
the whole network in comparison to self‐regulation without neu‐
rofeedback, as the sample size of the given study constituted a 
limitation with regard to statistical power, as well as a potentially 
slight variance introduced by different MR systems.

Overall, our findings are in line with recent theoretical ap‐
proaches that suggest different sub‐components of the neurofeed‐
back network for feedback processing and self‐regulation (Sitaram 
et al., 2017). While the anterior striatum appears to serve a unique 
function in response to neurofeedback, especially the lateral PFC 
and the ACC (of the network activated during neurofeedback in this 
study) have been defined as key regions in cognitive control in gen‐
eral (MacDonald, Cohen, Stenger, & Carter, 2000). Both regions are 
also jointly activated during various task modalities that involve cog‐
nitive control, including emotion regulation (Etkin, Egner, & Kalisch, 
2011; Goldin, McRae, Ramel, & Gross, 2008), response inhibition 
(Cai et al., 2015) and attentional control (Weissman, Gopalakrishnan, 

TA B L E  1   Self‐regulation with neurofeedback compared to 
passive viewing of neurofeedback

Increased 
activation

Peak voxel 
coordinates Peak voxel statistics

Visual feedback 
and reward x y z t p

Subcortical L/
anterior insula L

−18 −4 4 12.3283 0.000001

Anterior insula R 33 20 10 10.0164 0.000004

Subcortical R 18 8 16 9.4796 0.000006

Visual cortex L −39 −82 −9 6.2985 0.000141

Visual cortex R 36 −85 7 5.8471 0.000245

Self‐regulation and attention

Supplementary 
motor area 
bilateral

3 −1 58 13.0617 0.000001

Ventrolateral 
PFC/precentral 
gyrus L

−60 11 16 8.7361 0.000011

Dorsal anterior 
cingulate 
bilateral

0 14 43 7.7295 0.000029

Precentral gyrus 
L

−39 29 28 7.2432 0.000049

Precentral Gyrus 
R

51 2 46 7.2152 0.000055

Frontopolar/
dorsolateral 
PFC L

−45 48 13 7.0833 0.000058

Decreased activation

Precuneus −3 −55 31 −10.6369 0.000002

Posterior insula R 39 −22 19 −9.4743 0.000006

Posterior insula L −51 −22 13 −8.4177 0.000015

Medial PFC 0 41 −9 −7.5212 0.000036

Posterior temoral 
cortex/angular 
gyrus L

−60 −58 23 −6.7828 0.000081

Posterior temoral 
cortex/angular 
gyrus R

48 −61 25 −6.7624 0.000082

Note. Self‐regulation with neurofeedback was accompanied by increased 
activation in prefrontal control regions (dorsolateral and ventrolateral 
PFC, dorsal anterior cingulate, precentral gyrus, supplementary motor 
area) and regions involved in feedback processing (visual cortices, ante‐
rior insula and an extended subcortical cluster) as well as decreased acti‐
vation in the default mode network and the posterior insula. The table 
contains coordinates and statistics of peak voxels for the whole‐brain 
RFX contrast map thresholded at FDR corrected q < 0.05 (coordinates in 
Talairach space). PFC, Prefrontal cortex; L, left; R, right.
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Hazlett, & Woldorff, 2004), supporting their role as the general basis 
of self‐regulation. Fittingly, participants were instructed to dynami‐
cally engage and disengage from their mental task during self‐regu‐
lation (indeed participants confirmed to have followed these general 
strategies closely, see Sorger et al., 2018), thereby shifting their 
focus of attention to and away from the mental content driving the 
feedback, modulating activation in their attentional system during 
self‐regulation as in accordance with the observed prefrontal and 
parietal activation.

To our knowledge, this is the first study providing evidence 
for a linear relationship between the provided visual neurofeed‐
back information and activation increases within the striatum. 
Conforming to the observed modulations of striatum activation by 
neurofeedback, most theoretical approaches on neurofeedback 
underline the importance of reward processing during neurofeed‐
back, although several different working mechanisms have been 
proposed (for a recent overview see Sitaram et al., 2017). As the 
parametric activation paradigm applied in this study differs from 
previous research regarding the possibility to receive rewarding 
neurofeedback by up‐ as well as by down‐regulating activation ad‐
equately in relation to the target level, it remains open whether 
graded neurofeedback, as employed here, recruits the striatum 
differently compared to neurofeedback studies aiming at max‐
imizing the neurofeedback magnitude, as task load and reward 

probability are known to modulate activation strength and timing 
of reward system activation (Cardinal, 2006; Stalnaker, Calhoon, 
Ogawa, Roesch, & Schoenbaum, 2012). Additionally, it would be 
important for further research to examine strategically whether 
modulating the reward contained in neurofeedback can be used to 
optimize its influence on the striatum, for example by investigat‐
ing the effect of monetary reward for performance. Furthermore, 
to ensure that participants could optimally perform gradual self‐ 
regulation in both conditions, and focus on the relevant marker of 
performance (i.e. either derived from neurofeedback or in the no‐
feedback condition from introspection), no blinding was applied 
in the current study. As the lack of (double) blinding constitutes a 
limitation of our design, future research should investigate the ef‐
fects of blinding on the reward system during self‐regulation with 
neurofeedback.

5.2 | The influence of neurofeedback on different 
stages of reward processing

We also investigated how neurofeedback influences different 
stages of reward processing. In the current study, reward values 
were assigned to the distance between the instructed target acti‐
vation level and the achieved activation level, which was updated 
every 2 s. Interestingly, the observed neurofeedback effect was 

F I G U R E  5  Effect of gradual self‐regulation success on striatum activation (group and single‐subject results). The figure visualizes 
the BOLD‐signal level within the striatum region of interest ipsilateral to the neurofeedback target region for the two type‐of‐training 
conditions and across the different target‐level conditions: (a) Mean beta values for each target‐level condition across all participants 
separately for the no‐feedback (blue) and feedback (red) condition. Error bars represent standard errors of the means. When pooling the 
data across the target‐level conditions, the difference of mean‐beta values for the two type‐of training conditions (feedback, no‐feedback) 
was significant (p < 0.05, Bonferroni‐corrected, one‐sided). (b) Single‐subject mean beta values separately for each target‐level and type‐
of‐training condition. In 80% of participants (red‐rimmed), the mean striatum activation (i.e., pooled activation across the three target‐level 
conditions) was higher in the feedback compared to the no‐feedback condition. Remark. Participants with black underline underwent the 
feedback condition first and no‐feedback condition second. Abbreviations for mental strategies: IS = Inner speech, MO = mental orchestra, 
VM = visual motion imagery, MD = mental drawing, MS = mental sounds, MR = mental running
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substantially delayed (a significant difference between both train‐
ing conditions was observed only in a time window 8–14 s after 
a corresponding feedback information was provided). Taking into 
account that rtfMRI‐based neurofeedback is delayed over several 
seconds, the reward information provided during and shortly after 
a mental action is unrelated to the neural activity subserving the 
mental action itself. It remains to be determined if reception of 
conflicting reward information during performance of a mental ac‐
tion leads to alterations in neurofeedback processing, as besides 
attributing value to a certain stimulus, the striatum also detects 
relations between performed actions and rewards (FitzGerald, 
Schwartenbeck, & Dolan, 2014; Haruno et al., 2004; Kim, Sul, Huh, 
Lee, & Jung, 2009) and predicts when a reward should occur (Kohrs 
et al., 2012). Additionally to receiving noncorresponding feedback 
during or shortly after a mental action, the predictability of reward 
information is also reduced due to noise or other confounding fac‐
tors that distort the neurofeedback signal. Violations of reward 
expectancies as well as uncertainty of receiving rewards lead to 
alterations in striatum activation (Kohrs et al., 2012; McClure et 
al., 2003; Pagnoni et al., 2002). Both uncertainty and conflicting 
reward information could contribute to the difficulty to detect an 
immediate neurofeedback response in an early time window after 
the feedback is presented. Focusing on creating more direct closed‐
loop approaches (El Hady, 2016; Potter, El Hady, & Fetz, 2014), for 
example, by neurofeedback‐guided brain stimulation systems that 
stimulate the striatum directly, could help to detect optimal time 

windows for operant conditioning and increase the efficacy of neu‐
rofeedback strongly.

With respect to the interpretability of the current results 
regarding different phases of reward processing, it is also to be 
noted that different stages of feedback processing do not only 
differ in time, but also recruit different sub‐regions of the stria‐
tum (Balleine et al., 2007; Sleezer & Hayden, 2016; Tanaka et al., 
2004). As the current study aimed at describing the temporal re‐
lationship between visual neurofeedback information and stria‐
tum activation for the first time, regions of interest were chosen 
based on meta‐analytic peak coordinates on reward processing 
in fMRI, to increase the probability of detecting reward related 
activation. Due to this region‐of‐interest selection approach, dif‐
ferent anatomical sub‐regions of the anterior striatum contribute 
to the observed activation, and as a consequence we cannot make 
any strong claims regarding the exact anatomical sub‐structures 
underlying this activation pattern.

However, the ventral section of putamen and caudate indeed 
have been shown to create reward predictions using temporal infor‐
mation (Hiebert et al., 2014) supporting the interpretation that here 
temporal properties of reward information are crucial. Especially an‐
terior caudate has also been associated with biasing actions based 
on reward information (O'Doherty et al., 2004; Tanaka, Balleine, 
& O'Doherty, 2008; Tricomi, Delgado, & Fiez, 2004; Valentin, 
Dickinson, & O'Doherty, 2007), suggesting that the ROI signal rep‐
resents merged processes of reward prediction and action selection, 

F I G U R E  6  Relationship between self‐regulation success and striatum activation level (group and single subject results). Relationship 
between absolute distance to target activation level and striatum activation separately for the two type‐of‐training conditions. (a) Mean 
Fisher z‐transformed correlation coefficients between self‐regulation success and striatum activation separately for an early time window 
(0–3 TR shift, immediate and slightly delayed striatum activation) and a late time window (4–7 TR shift, delayed striatum activation). The 
difference of the correlation values with respect to the two type‐of‐training conditions (feedback, no feedback) was only significant for 
the late time window (p < 0.05, Bonferroni‐corrected, one‐sided). (b) Single‐subject results for the late time window. Eighty percent of 
participants showed a more negative correlation between distance to target‐level and striatum activation during gradual self‐regulation 
when receiving neurofeedback. Remark. Participants with black underline underwent feedback condition first and no‐feedback condition 
seconds. Abbreviations for mental tasks: IS = Inner speech, MO = mental orchestra, VM = visual motion imagery, MD = mental drawing, 
MS = mental sounds, MR = mental running
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thereby reflecting the interwoven transitions between different re‐
ward processing stages in the striatum (Haber et al., 2000).

5.3 | Linking mental actions to the information 
contained in neurofeedback

Neurofeedback differs from other domains of feedback learning dur‐
ing the learning process in that actions driving the reward are purely 
mental actions. To understand which mental actions lead to rewards, 
participants rely on introspection. The conscious monitoring of men‐
tal actions requires meta‐awareness, which recruits a distributed 
network of areas, including the pACC and the insula (Schooler et al., 
2011). In a loop‐like fashion, these hubs have been suggested to in‐
teract with other higher‐order cognitive networks involved in work‐
ing memory and attention, the striatum, the thalamus and regions 
recruited by the specific self‐regulation task during neurofeedback 
(Emmert et al., 2017; McCaig, Dixon, Keramatian, Liu, & Christoff, 
2011; Sitaram et al., 2017). Neural‐feedback loops between these 
networks and the striatum could be crucial in identifying a relation‐
ship between mental actions and corresponding reward values. The 
complex pattern of continuous top‐down input from other regions 
to the striatum during reward processing (Haruno & Kawato, 2006), 
could be an important contributing factor for the observed delay in 
striatum reactivity to neurofeedback.

However, action‐effect mapping is not selectively dependent on 
conscious introspection (Hommel, 1996). Accordingly, recent studies 
(Ramot, Grossman, Friedman, & Malach, 2016) demonstrated that 
covert neurofeedback, that is, during which participants are not 
aware of the fact that they received neurofeedback, was accompa‐
nied by increased striatum activation (Ramot et al., 2016). Both au‐
tomatic reward processing as well as conscious self‐regulation have 
been argued to be crucial in neurofeedback (Sitaram et al., 2017) 
but a mechanistic model of how automatic and subsequent stages 
of reward processing interact during neurofeedback is still lacking. 
For future research to tackle this issue, the temporal properties of 
neurofeedback should be taken into account because action‐reward 
mapping is known to be strongly influenced by the delay of a reward 
(Dobryakova & Tricomi, 2013; Tanaka et al., 2004).

6  | CONCLUSION

This study demonstrates that neurofeedback contributes to self‐
regulation through regions involved in feedback and reward pro‐
cessing, which share activation between different mental tasks. 
Focussing on the striatum as a key region in reward processing, 
we demonstrated increased activation in the anterior striatum 
during self‐regulation with neurofeedback, which correlated with 
self‐regulation success. The substantial delay in the observed ef‐
fect suggests that these modulations reflect later stages of reward 
processing beyond simple detection of external rewards, but fur‐
ther research is needed to understand the mechanisms of neuro‐
feedback reward learning. As trained associations between actions 

and rewards (for example during operant conditioning) are key to 
learning, the given results provide a promising outlook for neuro‐
feedback to facilitate learning with the potential for operant condi‐
tioning of mental actions.

ACKNOWLEDG MENTS

The authors would like to thank Florian Krause for valuable theoreti‐
cal input.

CONFLIC T OF INTERE S T

None declared.

ORCID

Leon Skottnik   https://orcid.org/0000-0002-9723-3593 

Tabea Kamp   https://orcid.org/0000-0002-4868-3248 

Rainer Goebel   https://orcid.org/0000-0003-1780-2467 

R E FE R E N C E S

Amano, K., Shibata, K., Kawato, M., Sasaki, Y., & Watanabe, T. (2016). 
Learning to associate orientation with color in early visual areas by 
associative decoded fMRI neurofeedback. Current Biology, 26(14), 
1861–1866. https://doi.org/10.1016/j.cub.2016.05.014

Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role 
of the dorsal striatum in reward and decision‐making. Journal 
of Neuroscience, 27(31), 8161–8165. https://doi.org/10.1523/
JNEUROSCI.1554-07.2007

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: A 
coordinate‐based meta‐analysis of BOLD fMRI experiments examin‐
ing neural correlates of subjective value. NeuroImage, 76, 412–427. 
https://doi.org/10.1016/j.neuroimage.2013.02.063

Birbaumer, N., Ruiz, S., & Sitaram, R. (2013). Learned regulation of brain 
metabolism. Trends in Cognitive Sciences, 17(6), 295–302. https://doi.
org/10.1016/j.tics.2013.04.009

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear 
systems analysis of functional magnetic resonance imaging in 
human V1. Journal of Neuroscience, 16(13), 4207–4221. https://doi.
org/10.1523/JNEUROSCI.16-13-04207.1996

Cai, W., Chen, T., Ryali, S., Kochalka, J., Li, C.‐S.‐R., & Menon, V. (2015). 
Causal interactions within a frontal‐cingulate‐parietal network 
during cognitive control: Convergent evidence from a multisite–mul‐
titask investigation. Cerebral Cortex, 26(5), 2140–2153. https://doi.
org/10.1093/cercor/bhv046

Cardinal, R. N. (2006). Neural systems implicated in delayed and probabi‐
listic reinforcement. Neural Networks, 19(8), 1277–1301. https://doi.
org/10.1016/j.neunet.2006.03.004

Caria, A., Veit, R., Sitaram, R., Lotze, M., Weiskopf, N., Grodd, W., & 
Birbaumer, N. (2007). Regulation of anterior insular cortex activity 
using real‐time fMRI. NeuroImage, 35(3), 1238–1246. https://doi.
org/10.1016/j.neuroimage.2007.01.018

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd 
ed.). Hillsdale: Erlbaum Associates.

Davelaar, E. J. (2018). Mechanisms of neurofeedback: A computa‐
tion‐theoretic approach. Neuroscience, 378, 175–188. https://doi.
org/10.1016/j.neuroscience.2017.05.052

DePasque Swanson, S., & Tricomi, E. (2014). Goals and task difficulty 
expectations modulate striatal responses to feedback. Cognitive, 

https://orcid.org/0000-0002-9723-3593
https://orcid.org/0000-0002-9723-3593
https://orcid.org/0000-0002-4868-3248
https://orcid.org/0000-0002-4868-3248
https://orcid.org/0000-0003-1780-2467
https://orcid.org/0000-0003-1780-2467
https://doi.org/10.1016/j.cub.2016.05.014
https://doi.org/10.1523/JNEUROSCI.1554-07.2007
https://doi.org/10.1523/JNEUROSCI.1554-07.2007
https://doi.org/10.1016/j.neuroimage.2013.02.063
https://doi.org/10.1016/j.tics.2013.04.009
https://doi.org/10.1016/j.tics.2013.04.009
https://doi.org/10.1523/JNEUROSCI.16-13-04207.1996
https://doi.org/10.1523/JNEUROSCI.16-13-04207.1996
https://doi.org/10.1093/cercor/bhv046
https://doi.org/10.1093/cercor/bhv046
https://doi.org/10.1016/j.neunet.2006.03.004
https://doi.org/10.1016/j.neunet.2006.03.004
https://doi.org/10.1016/j.neuroimage.2007.01.018
https://doi.org/10.1016/j.neuroimage.2007.01.018
https://doi.org/10.1016/j.neuroscience.2017.05.052
https://doi.org/10.1016/j.neuroscience.2017.05.052


14 of 15  |     SKOTTNIK et al.

Affective, & Behavioral Neuroscience, 14(2), 610–620. https://doi.
org/10.3758/s13415-014-0269-8

Dobryakova, E., & Tricomi, E. (2013). Basal ganglia engagement during 
feedback processing after a substantial delay. Cognitive, Affective, & 
Behavioral Neuroscience, 13(4), 725–736. https://doi.org/10.3758/
s13415-013-0182-6

El Hady, A. (2016). Closed loop neuroscience. London, UK: Academic  
Press.

Emmert, K., Kopel, R., Koush, Y., Maire, R., Senn, P., Van De Ville, D., 
& Haller, S. (2017). Continuous vs. intermittent neurofeedback to 
regulate auditory cortex activity of tinnitus patients using real‐time 
fMRI‐A pilot study. NeuroImage: Clinical, 14, 97–104. https://doi.
org/10.1016/j.nicl.2016.12.023

Emmert, K., Kopel, R., Sulzer, J., Brühl, A. B., Berman, B. D., Linden, D. E., 
… Frank, S. (2016). Meta‐analysis of real‐time fMRI neurofeedback 
studies using individual participant data: How is brain regulation me‐
diated? NeuroImage, 124, 806–812.

Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior 
cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 
15(2), 85–93. https://doi.org/10.1016/j.tics.2010.11.004

Fetz, E. E. (2007). Volitional control of neural activity: Implications for 
brain–computer interfaces. The Journal of Physiology, 579(3), 571–
579. https://doi.org/10.1113/jphysiol.2006.127142

FitzGerald, T. H., Schwartenbeck, P., & Dolan, R. J. (2014). Reward‐re‐
lated activity in ventral striatum is action contingent and modulated 
by behavioral relevance. Journal of Neuroscience, 34(4), 1271–1279. 
https://doi.org/10.1523/JNEUROSCI.4389-13.2014

Gevensleben, H., Holl, B., Albrecht, B., Schlamp, D., Kratz, O., Studer, 
P., … Heinrich, H. (2009). Distinct EEG effects related to neurofeed‐
back training in children with ADHD: A randomized controlled trial. 
International Journal of Psychophysiology, 74(2), 149–157. https://doi.
org/10.1016/j.ijpsycho.2009.08.005

Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases 
of emotion regulation: Reappraisal and suppression of negative emo‐
tion. Biological Psychiatry, 63(6), 577–586. https://doi.org/10.1016/j.
biopsych.2007.05.031

Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., 
… Vanrumste, B. (2008). Review on solving the inverse problem in 
EEG source analysis. Journal of Neuroengineering and Rehabilitation, 
5(1), 25. https://doi.org/10.1186/1743-0003-5-25

Gustavo, B., Soares, S., & Paton, J. J. (2015). A scalable population code 
for time in the striatum. Current Biology, 25(9), 1113–1122. https://
doi.org/10.1016/j.cub.2015.02.036

Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal 
pathways in primates form an ascending spiral from the shell to the 
dorsolateral striatum. Journal of Neuroscience, 20(6), 2369–2382. 
https://doi.org/10.1523/JNEUROSCI.20-06-02369.2000

Haller, S., Kopel, R., Jhooti, P., Haas, T., Scharnowski, F., Lovblad, K.‐O., 
… Van De Ville, D. (2013). Dynamic reconfiguration of human brain 
functional networks through neurofeedback. NeuroImage, 81, 243–
252. https://doi.org/10.1016/j.neuroimage.2013.05.019

Hamilton, J. P., Glover, G. H., Hsu, J. J., Johnson, R. F., & Gotlib, I. H. 
(2011). Modulation of subgenual anterior cingulate cortex activity 
with real‐time neurofeedback. Human Brain Mapping, 32(1), 22–31. 
https://doi.org/10.1002/hbm.20997

Haruno, M., & Kawato, M. (2006). Heterarchical reinforcement‐learn‐
ing model for integration of multiple cortico‐striatal loops: fMRI 
examination in stimulus‐action‐reward association learning. 
Neural Networks, 19(8), 1242–1254. https://doi.org/10.1016/j.
neunet.2006.06.007

Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., 
… Kawato, M. (2004). A neural correlate of reward‐based behavioral 
learning in caudate nucleus: A functional magnetic resonance imag‐
ing study of a stochastic decision task. Journal of Neuroscience, 24(7), 
1660–1665. https://doi.org/10.1523/JNEUROSCI.3417-03.2004

Hiebert, N. M., Vo, A., Hampshire, A., Owen, A. M., Seergobin, K. N., & 
MacDonald, P. A. (2014). Striatum in stimulus–response learning via 
feedback and in decision making. NeuroImage, 101, 448–457. https://
doi.org/10.1016/j.neuroimage.2014.07.013

Hommel, B. (1996). The cognitive representation of action: Automatic 
integration of perceived action effects. Psychological Research 
Psychologische Forschung, 59(3), 176–186. https://doi.org/10.1007/
BF00425832

Innocenti, G. M., Dyrby, T. B., Andersen, K. W., Rouiller, E. M., & Caminiti, 
R. (2016). The crossed projection to the striatum in two species of 
monkey and in humans: Behavioral and evolutionary significance. 
Cerebral Cortex, bhw161. https://doi.org/10.1093/cercor/bhw161

Jarbo, K., & Verstynen, T. D. (2015). Converging structural and functional 
connectivity of orbitofrontal, dorsolateral prefrontal, and posterior 
parietal cortex in the human striatum. Journal of Neuroscience, 35(9), 
3865–3878. https://doi.org/10.1523/JNEUROSCI.2636-14.2015

Johnston, S. J., Boehm, S. G., Healy, D., Goebel, R., & Linden, D. E. (2010). 
Neurofeedback: A promising tool for the self‐regulation of emotion 
networks. NeuroImage, 49(1), 1066–1072. https://doi.org/10.1016/j.
neuroimage.2009.07.056

Jung, W. H., Jang, J. H., Park, J. W., Kim, E., Goo, E.‐H., Im, O.‐S., & Kwon, 
J. S. (2014). Unravelling the intrinsic functional organization of the 
human striatum: A parcellation and connectivity study based on rest‐
ing‐state fMRI. PLoS ONE, 9(9), e106768. https://doi.org/10.1371/
journal.pone.0106768

Kim, H., Sul, J. H., Huh, N., Lee, D., & Jung, M. W. (2009). Role of striatum 
in updating values of chosen actions. Journal of Neuroscience, 29(47), 
14701–14712. https://doi.org/10.1523/JNEUROSCI.2728-09.2009

Kjaer, T. W., Bertelsen, C., Piccini, P., Brooks, D., Alving, J., & Lou, H. C. 
(2002). Increased dopamine tone during meditation‐induced change 
of consciousness. Cognitive Brain Research, 13(2), 255–259. https://
doi.org/10.1016/S0926-6410(01)00106-9

Kohrs, C., Angenstein, N., Scheich, H., & Brechmann, A. (2012). Human 
striatum is differentially activated by delayed, omitted, and immedi‐
ate registering feedback. Frontiers in Human Neuroscience, 6, https://
doi.org/10.3389/fnhum.2012.00243.

Lacadie, C. M., Fulbright, R. K., Rajeevan, N., Constable, R. T., & 
Papademetris, X. (2008). More accurate Talairach coordinates for 
neuroimaging using non‐linear registration. NeuroImage, 42(2), 717–
725. https://doi.org/10.1016/j.neuroimage.2008.04.240

Lacroix, J. M., & Gowen, A. H. (1981). The acquisition of auto‐
nomic control through biofeedback: Some tests of discrimi‐
nation theory. Psychophysiology, 18(5), 559–572. https://doi.
org/10.1111/j.1469-8986.1981.tb01826.x

MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). 
Dissociating the role of the dorsolateral prefrontal and anterior cin‐
gulate cortex in cognitive control. Science, 288(5472), 1835–1838.

Marchesotti, S., Martuzzi, R., Schurger, A., Blefari, M. L., del Millán, J. 
R., Bleuler, H., & Blanke, O. (2017). Cortical and subcortical mech‐
anisms of brain‐machine interfaces. Human Brain Mapping, 38(6), 
2971–2989. https://doi.org/10.1002/hbm.23566

McCaig, R. G., Dixon, M., Keramatian, K., Liu, I., & Christoff, K. 
(2011). Improved modulation of rostrolateral prefrontal cor‐
tex using real‐time fMRI training and meta‐cognitive aware‐
ness. NeuroImage, 55(3), 1298–1305. https://doi.org/10.1016/j.
neuroimage.2010.12.016

McClure, S. M., Berns, G. S., & Montague, P. R. (2003). Temporal predic‐
tion errors in a passive learning task activate human striatum. Neuron, 
38(2), 339–346. https://doi.org/10.1016/S0896-6273(03)00154-5

Megumi, F., Yamashita, A., Kawato, M., & Imamizu, H. (2015). Functional 
MRI neurofeedback training on connectivity between two regions in‐
duces long‐lasting changes in intrinsic functional network. Frontiers in 
Human Neuroscience, 9, https://doi.org/10.3389/fnhum.2015.00160

Morris, S. B., & DeShon, R. P. (2002). Combining effect size es‐
timates in meta‐analysis with repeated measures and 

https://doi.org/10.3758/s13415-014-0269-8
https://doi.org/10.3758/s13415-014-0269-8
https://doi.org/10.3758/s13415-013-0182-6
https://doi.org/10.3758/s13415-013-0182-6
https://doi.org/10.1016/j.nicl.2016.12.023
https://doi.org/10.1016/j.nicl.2016.12.023
https://doi.org/10.1016/j.tics.2010.11.004
https://doi.org/10.1113/jphysiol.2006.127142
https://doi.org/10.1523/JNEUROSCI.4389-13.2014
https://doi.org/10.1016/j.ijpsycho.2009.08.005
https://doi.org/10.1016/j.ijpsycho.2009.08.005
https://doi.org/10.1016/j.biopsych.2007.05.031
https://doi.org/10.1016/j.biopsych.2007.05.031
https://doi.org/10.1186/1743-0003-5-25
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1523/JNEUROSCI.20-06-02369.2000
https://doi.org/10.1016/j.neuroimage.2013.05.019
https://doi.org/10.1002/hbm.20997
https://doi.org/10.1016/j.neunet.2006.06.007
https://doi.org/10.1016/j.neunet.2006.06.007
https://doi.org/10.1523/JNEUROSCI.3417-03.2004
https://doi.org/10.1016/j.neuroimage.2014.07.013
https://doi.org/10.1016/j.neuroimage.2014.07.013
https://doi.org/10.1007/BF00425832
https://doi.org/10.1007/BF00425832
https://doi.org/10.1093/cercor/bhw161
https://doi.org/10.1523/JNEUROSCI.2636-14.2015
https://doi.org/10.1016/j.neuroimage.2009.07.056
https://doi.org/10.1016/j.neuroimage.2009.07.056
https://doi.org/10.1371/journal.pone.0106768
https://doi.org/10.1371/journal.pone.0106768
https://doi.org/10.1523/JNEUROSCI.2728-09.2009
https://doi.org/10.1016/S0926-6410(01)00106-9
https://doi.org/10.1016/S0926-6410(01)00106-9
https://doi.org/10.3389/fnhum.2012.00243
https://doi.org/10.3389/fnhum.2012.00243
https://doi.org/10.1016/j.neuroimage.2008.04.240
https://doi.org/10.1111/j.1469-8986.1981.tb01826.x
https://doi.org/10.1111/j.1469-8986.1981.tb01826.x
https://doi.org/10.1002/hbm.23566
https://doi.org/10.1016/j.neuroimage.2010.12.016
https://doi.org/10.1016/j.neuroimage.2010.12.016
https://doi.org/10.1016/S0896-6273(03)00154-5
https://doi.org/10.3389/fnhum.2015.00160


     |  15 of 15SKOTTNIK et al.

independent‐groups designs. Psychological Methods, 7(1), 105. 
https://doi.org/10.1037/1082-989X.7.1.105

Mottaz, A., Solcà, M., Magnin, C., Corbet, T., Schnider, A., & Guggisberg, 
A. G. (2015). Neurofeedback training of alpha‐band coherence en‐
hances motor performance. Clinical Neurophysiology, 126(9), 1754–
1760. https://doi.org/10.1016/j.clinph.2014.11.023

O'Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & 
Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum 
in instrumental conditioning. Science, 304(5669), 452. https://doi.
org/10.1126/science.1094285

Pagnoni, G., Zink, C. F., Montague, P. R., & Berns, G. S. (2002). Activity 
in human ventral striatum locked to errors of reward prediction. 
NatureNeuroscience, 5(2), 97. https://doi.org/10.1038/nn802

Potter, S. M., El Hady, A., & Fetz, E. E. (2014). Closed‐loop neuroscience 
and neuroengineering. Frontiers in Neural Circuits, 8, 115. https://doi.
org/10.3389/fncir.2014.00115

Ramot, M., Grossman, S., Friedman, D., & Malach, R. (2016). Covert 
neurofeedback without awareness shapes cortical network 
spontaneous connectivity. Proceedings of the National Academy 
of Sciences, 113(17), E2413–E2420. https://doi.org/10.1073/
pnas.1516857113

Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of 
reward and motivation. Current Opinion in Neurobiology, 6(2), 228–
236. https://doi.org/10.1016/S0959-4388(96)80077-8

Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005). Representation 
of action‐specific reward values in the striatum. Science, 310(5752), 
1337–1340. https://doi.org/10.1126/science.1115270

Scheinost, D., Stoica, T., Saksa, J., Papademetris, X., Constable, R., 
Pittenger, C., & Hampson, M. (2013). Orbitofrontal cortex neurofeed‐
back produces lasting changes in contamination anxiety and resting‐
state connectivity. Translational Psychiatry, 3(4), e250. https://doi.
org/10.1038/tp.2013.24

Schooler, J. W., Smallwood, J., Christoff, K., Handy, T. C., Reichle, E. D., 
& Sayette, M. A. (2011). Meta‐awareness, perceptual decoupling and 
the wandering mind. Trends in Cognitive Sciences, 15(7), 319–326. 
https://doi.org/10.1016/j.tics.2011.05.006

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis‐
Peacock, J., … Oblak, E. (2017). Closed‐loop brain training: The sci‐
ence of neurofeedback. Nature Reviews Neuroscience, 18(2), 86–100. 
https://doi.org/10.1038/nrn.2016.164

Sleezer, B. J., & Hayden, B. Y. (2016). Differential contributions of ventral 
and dorsal striatum to early and late phases of cognitive set reconfig‐
uration. Journal of Cognitive Neuroscience. https://doi.org/10.1162/
jocn_a_01011

Sorger, B., Kamp, T., Weiskopf, N., Peters, J. C., & Goebel, R. (2018). 
When the brain takes ‘BOLD’steps: Real‐time fMRI neurofeedback 
can further enhance the ability to gradually self‐regulate regional 
brain activation. Neuroscience.378, 71–88. https://doi.org/10.1016/j.
neuroscience.2016.09.026

Stalnaker, T. A., Calhoon, G. G., Ogawa, M., Roesch, M. R., & Schoenbaum, 
G. (2012). Reward prediction error signaling in posterior dorso‐
medial striatum is action specific. Journal of Neuroscience, 32(30), 
10296–10305. https://doi.org/10.1523/JNEUROSCI.0832-12.2012

Subramanian, L., Hindle, J. V., Johnston, S., Roberts, M. V., Husain, 
M., Goebel, R., & Linden, D. (2011). Real‐time functional magnetic 
resonance imaging neurofeedback for treatment of Parkinson's 

disease. Journal of Neuroscience, 31(45), 16309–16317. https://doi.
org/10.1523/JNEUROSCI.3498-11.2011

Talairach, J., & Tournoux, P. (1988). Co‐planar stereotaxic atlas of the 
human brain. In 3‐Dimensional proportional system: an approach to ce‐
rebral imaging. Stuttgart, Germany: G. Thieme.

Tanaka, S. C., Balleine, B. W., & O'Doherty, J. P. (2008). Calculating con‐
sequences: Brain systems that encode the causal effects of actions. 
Journal of Neuroscience, 28(26), 6750–6755. https://doi.org/10.1523/
JNEUROSCI.1808-08.2008

Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, 
S. (2004). Prediction of immediate and future rewards differentially 
recruits cortico‐basal ganglia loops. NatureNeuroscience, 7(8), 887. 
https://doi.org/10.1038/nn1279

Tang, Y.‐Y., Hölzel, B. K., & Posner, M. I. (2015). The neuroscience of 
mindfulness meditation. Nature Reviews Neuroscience, 16(4), 213–
225. https://doi.org/10.1038/nrn3916

Tricomi, E. M., Balleine, B. W., & O’Doherty, J. P. (2009). A specific 
role for posterior dorsolateral striatum in human habit learning. 
European Journal of Neuroscience, 29(11), 2225–2232. https://doi.
org/10.1111/j.1460-9568.2009.06796.x

Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate 
activity by action contingency. Neuron, 41(2), 281–292. https://doi.
org/10.1016/S0896-6273(03)00848-1

Valentin, V. V., Dickinson, A., & O'Doherty, J. P. (2007). Determining 
the neural substrates of goal‐directed learning in the human brain. 
Journal of Neuroscience, 27(15), 4019–4026. https://doi.org/10.1523/
JNEUROSCI.0564-07.2007

Weissman, D. H., Gopalakrishnan, A., Hazlett, C., & Woldorff, M. 
(2004). Dorsal anterior cingulate cortex resolves conflict from 
distracting stimuli by boosting attention toward relevant events. 
Cerebral Cortex, 15(2), 229–237. https://doi.org/10.1093/cercor/
bhh125

Young, K. D., Siegle, G. J., Zotev, V., Phillips, R., Misaki, M., Yuan, H., … 
Bodurka, J. (2017). Randomized clinical trial of real‐time fMRI amygdala 
neurofeedback for major depressive disorder: Effects on symptoms 
and autobiographical memory recall. American Journal of Psychiatry, 
174(8), 748–755. https://doi.org/10.1176/appi.ajp.2017.16060637

Zilverstand, A., Sorger, B., Sarkheil, P., & Goebel, R. (2015). fMRI neuro‐
feedback facilitates anxiety regulation in females with spider phobia. 
Frontiers in Behavioral Neuroscience, 9, 148. https://doi.org/10.3389/
fnbeh.2015.00148

Zilverstand, A., Sorger, B., Slaats‐Willemse, D., Kan, C. C., Goebel, R., 
& Buitelaar, J. K. (2017). fMRI neurofeedback training for increasing 
anterior cingulate cortex activation in adult attention deficit hyper‐
activity disorder. An exploratory randomized, single‐blinded study. 
PLoS ONE, 12(1), e0170795.

How to cite this article: Skottnik L, Sorger B, Kamp T, Linden 
D, Goebel R. Success and failure of controlling the real‐time 
functional magnetic resonance imaging neurofeedback signal 
are reflected in the striatum. Brain Behav. 2019;9:e01240. 
https://doi.org/10.1002/brb3.1240

https://doi.org/10.1037/1082-989X.7.1.105
https://doi.org/10.1016/j.clinph.2014.11.023
https://doi.org/10.1126/science.1094285
https://doi.org/10.1126/science.1094285
https://doi.org/10.1038/nn802
https://doi.org/10.3389/fncir.2014.00115
https://doi.org/10.3389/fncir.2014.00115
https://doi.org/10.1073/pnas.1516857113
https://doi.org/10.1073/pnas.1516857113
https://doi.org/10.1016/S0959-4388(96)80077-8
https://doi.org/10.1126/science.1115270
https://doi.org/10.1038/tp.2013.24
https://doi.org/10.1038/tp.2013.24
https://doi.org/10.1016/j.tics.2011.05.006
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1162/jocn_a_01011
https://doi.org/10.1162/jocn_a_01011
https://doi.org/10.1016/j.neuroscience.2016.09.026
https://doi.org/10.1016/j.neuroscience.2016.09.026
https://doi.org/10.1523/JNEUROSCI.0832-12.2012
https://doi.org/10.1523/JNEUROSCI.3498-11.2011
https://doi.org/10.1523/JNEUROSCI.3498-11.2011
https://doi.org/10.1523/JNEUROSCI.1808-08.2008
https://doi.org/10.1523/JNEUROSCI.1808-08.2008
https://doi.org/10.1038/nn1279
https://doi.org/10.1038/nrn3916
https://doi.org/10.1111/j.1460-9568.2009.06796.x
https://doi.org/10.1111/j.1460-9568.2009.06796.x
https://doi.org/10.1016/S0896-6273(03)00848-1
https://doi.org/10.1016/S0896-6273(03)00848-1
https://doi.org/10.1523/JNEUROSCI.0564-07.2007
https://doi.org/10.1523/JNEUROSCI.0564-07.2007
https://doi.org/10.1093/cercor/bhh125
https://doi.org/10.1093/cercor/bhh125
https://doi.org/10.1176/appi.ajp.2017.16060637
https://doi.org/10.3389/fnbeh.2015.00148
https://doi.org/10.3389/fnbeh.2015.00148
https://doi.org/10.1002/brb3.1240

